

See page 27 for clarification of code developed wind pressures prior to using this table.

Notes:
Notes:
1 Studs are checked for simple-span deflection and stress. Stress calculations Studs are checked for simple-span deflection and stress. Stress calcu
are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10 " away from the end bearing.
2 A $1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.
4 Listed limiting heights are based on steel properties only.

5 For bending, studs are assumed to be adequately braced to develop full allowable moment capacity. Stud distortional buckling based on an assumed $K \phi=0$.
6 Web crippling check based on 1 -inch end bearing. Web stiffeners are required when listed limiting heights are followed by " e ".
7 Members marked with an ${ }^{1}$ have $h / t>200$, and thus require end stiffeners.
8 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A $1-1 / 2^{\prime \prime}$ by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs)

See page 27 for clarification of code developed wind pressures prior to using this table.

Notes:
1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated
section 10 "away from the section 10 " away from the end bearing.
2 A $1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.
4 Listed limiting heights are based on steel properties only.

5 For bending, studs are assumed to be adequately braced to develop full allowable moment capacity. Stud distortional buckling based on an assumed $K \phi=0$.
6 Web crippling check based on 1 -inch end bearing. Web stiffeners are required when listed limiting heights are followed by " e ".
7 Members marked with an ${ }^{1}$ have $h / t>200$, and thus require end stiffeners.
8 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A $1-1 / 2^{\prime \prime}$ by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs)

9 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and Fy=50ksi for 54 mil, 68 mil and 97 mil Studs.
10 For deflection calculations, 15 psf and higher wind pressures have been multiplied by 0.7 , in accordance with footnote " f " of IBC table 1604.3. The 5 psf pressure has not been reduced for deflection checks.
11 Lateral loads have not been modified for strength checks. Full loads are applied.
12 End reactions must be checked for web crippling separately.

