	Member			5psf	
	Member	Spacing (in) o.c.	L/120	L/240	L/360
皆	250S137-33	12	$17{ }^{\prime \prime}{ }^{\prime \prime}$	13'10"	$12^{\prime \prime} 1{ }^{\prime \prime}$
		16	15' 10"	$12^{\prime} 7$ "	11' 0 "
		24	$13^{\prime} 10 "$	11' 0"	$9^{\prime} 7{ }^{\prime \prime}$
	250S137-43	12	19'0"	$15^{\prime \prime} 1{ }^{\prime \prime}$	$13^{\prime \prime}{ }^{\prime \prime}$
		16	17'3"	$13^{\prime \prime} 8^{\prime \prime}$	11' 11"
		24	$15^{\prime \prime} 1{ }^{\prime \prime}$	11' 11"	$10^{\prime \prime}{ }^{\prime \prime}$
	250S137-54	12	20'3"	$16^{\prime \prime} 1^{\prime \prime}$	$14^{\prime \prime} 1{ }^{\prime \prime}$
		16	$18^{\prime \prime} 5$	$14^{\prime \prime} 8$	$12^{\prime \prime} 9$
		24	$16^{\prime \prime} 1$	$12^{\prime \prime} 9$	11' 2 "
	250S137-68	12	21 ' ${ }^{\prime \prime}$	17' 2 "	$15^{\prime \prime} 0^{\prime \prime}$
		16	19'8"	$15^{\prime} 7{ }^{\prime \prime}$	$13^{\prime \prime} 8^{\prime \prime}$
		24	17' 2 "	$13^{\prime \prime} 8$	11' 11"
	250S137-97	12	23' "' $^{\prime \prime}$	18' 10"	$16^{\prime} 5 "$
		16	21' 6 "	$17^{\prime \prime} 1$	$14^{\prime} 11{ }^{\prime \prime}$
		24	$18^{\prime} 10 "$	14' 11"	$13^{\prime} 0$
	250S162-33	12	$18^{\prime \prime} \mathbf{4 '}^{\prime \prime}$	14'7"	12'9"
		16	$16^{\prime \prime} 8^{\prime \prime}$	$13^{\prime} 3^{\prime \prime}$	11'7"
		24	$14^{\prime \prime} 7$	11'7"	$10^{\prime \prime} 1{ }^{\prime \prime}$
	250S162-43	12	19'11"	15' 10"	$13^{\prime} 10^{\prime \prime}$
		16	18'1"	$14^{\prime \prime} 4$	$12^{\prime \prime} 7$
		24	15' 10"	$12^{\prime \prime} 7$	$11^{\prime} 0$ "
	250S162-54	12	21'4"	16' 11"	$14^{\prime \prime}{ }^{\prime \prime}$
		16	19'4"	$15^{\prime} 5$	$13^{\prime \prime}{ }^{\prime \prime}$
		24	16' 11"	$13^{\prime \prime} 5^{\prime \prime}$	11' 9"
	250S162-68	12	22' 9"	$18^{\prime \prime} 1$	$15^{\prime \prime}{ }^{\prime \prime}$
		16	$20^{\prime \prime} 8^{\prime \prime}$	$16^{\prime \prime} 5^{\prime \prime}$	$14^{\prime \prime} 4^{\prime \prime}$
		24	$18^{\prime \prime} 1$	$14^{\prime \prime} 4^{\prime \prime}$	$12^{\prime} 6^{\prime \prime}$
	250S162-97	12	25'0"	19' 10"	$17{ }^{\prime \prime}$
		16	22' 9"	18'0"	15' 9"
		24	19' 10 "	$15^{\prime \prime} 9$	$13^{\prime \prime}{ }^{\prime \prime}$

Notes:

1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
$2 \mathrm{~A} 1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $h / t>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A 1-1/2" by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.
11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

	Member	Spacing (in) o.c.	5psf		
			L/120	L/240	L/360
	350S137-33	12	22' 7"	17' 11"	15' 8 "
		16	20'7"	$16^{\prime \prime} 4^{\prime \prime}$	$14^{\prime \prime} 3^{\prime \prime}$
		24	17' ${ }^{\prime \prime}$	$14^{\prime} 3$ "	12' ${ }^{\prime \prime}$
		12	24'7"	19' 6"	17' 1"
	350S137-43	16	22'4"	17' 9"	15'6"
		24	19'6"	$15{ }^{\prime \prime}$	$13^{\prime} 6^{\prime \prime}$
		12	$26^{\prime \prime} 4^{\prime \prime}$	20' 11"	$18^{\prime \prime} 3^{\prime \prime}$
	350S137-54	16	23'11"	19'0"	$16^{\prime \prime} 7$
		24	20'11"	$16^{\prime} 7$ "	$14^{\prime} 6^{\prime \prime}$
		12	28' ${ }^{\prime \prime}$	22'4"	19'6"
	350S137-68	16	25'7"	20'3"	17' 9"
		24	22'4"	17' 9"	15' $6^{\prime \prime}$
		12	30' 11"	24'7"	21'5"
	350S137-97	16	28'1"	22' 4"	19'6"
		24	$24^{\prime} 7{ }^{\prime \prime}$	$19^{\prime \prime}$ "	$17{ }^{\prime \prime} 0$
		12	23' 9"	18' 10"	16' $5^{\prime \prime}$
	350S162-33	16	21'7"	$17^{\prime \prime} 1{ }^{\prime \prime}$	14' 11"
		24	18' 5 "	14' 11"	13'1"
		12	25' 10"	$20^{\prime \prime}{ }^{\prime \prime}$	17' 11"
	350S162-43	16	23' ${ }^{\prime \prime}$	18'7"	$16^{\prime \prime} 3^{\prime \prime}$
		24	20' ${ }^{\prime \prime}$	$16^{\prime} 3^{\prime \prime}$	14'2"
		12	27' $8^{\prime \prime}$	21' 11"	19'2"
	350S162-54	16	25'1"	19'11"	17' 5"
		24	21'11"	17' 5"	15' ${ }^{\prime \prime}$
		12	29'7"	23' 6 "	20' 6 "
	350S162-68	16	26'10"	21'4"	18' 7 "
		24	$23^{\prime} 6^{\prime \prime}$	18'7"	$16^{\prime} 3^{\prime \prime}$
		12	32' 7 "	25'10"	22' 7 "
	350S162-97	16	29'7"	23' 6"	20' 6"
		24	25' 10 "	$20^{\prime \prime}$ "	17' 11"

	Member	Spacing (in) o.c.	5psf		
			L/120	L/240	L/360
3-1/2" Structural Framing	350S200-33	12	24' 11"	19'10"	$17^{\prime \prime} 4^{\prime \prime}$
		16	22' 8"	18' 0 "	15' 9"
		24	19'4"	15'9"	13' ${ }^{\prime \prime}$
	350S200-43	12	$27{ }^{\prime \prime}$	21'8"	18' 11"
		16	24' 9"	19' 8"	17' $2^{\prime \prime}$
		24	21' 8"	$17^{\prime \prime}{ }^{\prime \prime}$	$15^{\prime} 0$ "
	350S200-54	12	29'3"	23' 2 "	20'3"
		16	26' 6 "	21' 1"	$18^{\prime \prime} 5^{\prime \prime}$
		24	23' 2 "	$18^{\prime \prime} 5$	16'1"
	350S200-68	12	31 ' ${ }^{\prime \prime}$	$24^{\prime} 10$ "	21'8"
		16	28' 5 "	22'7"	$19^{\prime \prime} 8^{\prime \prime}$
		24	$24^{\prime \prime} 10$	19'8"	$17^{\prime \prime} 3^{\prime \prime}$
	350S200-97	12	34'7"	$27^{\prime \prime} 5^{\prime \prime}$	24'0"
		16	$31^{\prime \prime} 5$	24'11"	21'9"
		24	$27^{\prime \prime}{ }^{\prime \prime}$	21'9"	$19^{\prime \prime} 0^{\prime \prime}$
	350S250-43	12	28' 9"	22'10"	19'11"
		16	$26^{\prime \prime} 1{ }^{\prime \prime}$	20'9"	18'1"
		24	22'10"	18'1"	15' 10"
	350S250-54	12	30' 9"	$24^{\prime \prime}{ }^{\prime \prime}$	21'4"
		16	$27^{\prime \prime} 11{ }^{\prime \prime}$	22' 2 "	$19^{\prime \prime} 4^{\prime \prime}$
		24	24'5"	19'4"	16' 11"
	350S250-68	12	$33^{\prime \prime} 1{ }^{\prime \prime}$	26'3"	22' 11"
		16	30' 0 "	23'10"	20' 10"
		24	26' ${ }^{\prime \prime}$	20'10"	18'2"
	350S250-97	12	36' 7 "	29'1"	25' $5^{\prime \prime}$
		16	33' $3^{\prime \prime}$	26' 5"	23' 1"
		24	$29^{\prime \prime} 1$	$23^{\prime \prime} 1$	$20^{\prime \prime}{ }^{\prime \prime}$

Notes:

1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
$2 \mathrm{~A} 1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights Web crippling check based on 1 -inch end bearing.
are followed by e ", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $\mathrm{h} / \mathrm{t}>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A $1-1 / 2^{\prime \prime}$ by 4 " knockout spaced no closer than 24 " o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.

11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

				ppsf	
	Member	Spacing (in) o.c.	L/120	L/240	L/360
	362S137-33	12	23' 3 "	18'5"	$16^{\prime \prime} 1{ }^{\prime \prime}$
		16	21'1"	16' 9"	$14^{\prime} 8{ }^{\prime \prime}$
		24	$17^{\prime \prime} 6^{\prime \prime}$	$14^{\prime \prime} 8$	$12^{\prime} 10^{\prime \prime}$
	362S137-43	12	25' ${ }^{\prime \prime}$	20'1"	17' 6"
		16	$23^{\prime \prime} 0$	18'3"	15'11"
		24	20'1"	15' 11"	13'11"
	362S137-54	12	27'1"	21'6"	18'9"
		16	24'7"	19' 6"	17' 1"
		24	21'6"	$17^{\prime \prime} 1$	14'11"
	362S137-68	12	$28^{\prime \prime} 11{ }^{\prime \prime}$	22'11"	20'1"
		16	26'3"	20'10"	18'3"
		24	22'11"	$18^{\prime \prime} 3^{\prime \prime}$	$15^{\prime} 11{ }^{\prime \prime}$
	362S137-97	12	31' 10"	25' ${ }^{\prime \prime}$	22'1"
		16	28'11"	22'11"	20'1"
		24	$25^{\prime} 3^{\prime \prime}$	20'1"	$17^{\prime} 6^{\prime \prime}$
	362S162-33	12	24'4"	19'4"	16' 11"
		16	22' 2 "	17' 7 "	15'4"
		24	$18^{\prime \prime} 9$	$15^{\prime \prime} 4^{\prime \prime}$	$13^{\prime \prime}{ }^{\prime \prime}$
	362S162-43	12	$26^{\prime \prime} 6^{\prime \prime}$	21' 0"	18'5"
		16	24'1"	19'1"	16' 8"
		24	21'0"	$16^{\prime \prime} 8$	$14^{\prime} 7$ "
	362S162-54	12	$28^{\prime \prime} 5^{\prime \prime}$	22'6"	19'8"
		16	25' 10"	20' 6"	17' 11"
		24	22'6"	$17^{\prime \prime} 11{ }^{\prime \prime}$	15'7"
	362S162-68	12	$30^{\prime \prime}{ }^{\prime \prime}$	24'1"	21'1"
		16	$27^{\prime \prime} 7$	21'11"	19'2"
		24	24'1"	19'2"	16' 9"
	362S162-97	12	$33^{\prime \prime} 6^{\prime \prime}$	26'7"	23' ${ }^{\prime \prime}$
		16	$30^{\prime \prime} 5^{\prime \prime}$	24' ${ }^{\prime \prime}$	21'1"
		24	$26^{\prime} 7$ "	21'1"	18' 5"

	Member	Spacing (in) o.c.	5 psf		
			L/120	L/240	L/360
-	362S200-33	12	25' 8"	20' 4 "	17' 9"
		16	23' 3"	18' 6"	16' 2 "
		24	$19^{\prime \prime} 8$	$16^{\prime} 2$	$14^{\prime \prime} 1^{\prime \prime}$
	362S200-43	12	28' 0 "	22' 3"	19' ${ }^{\prime \prime}$
		16	25' 5"	20' 2 "	17' 8"
		24	$22^{\prime \prime}$	17' 8"	15' $5^{\prime \prime}$
	362S200-54	12	30' 0 "	23' 10"	20' 10"
		16	$27^{\prime \prime}{ }^{\prime \prime}$	21' 8"	18' 11"
		24	23' 10"	18' 11"	16' 6 "
	362S200-68	12	32' 2 "	25' 6"	22'3"
		16	29' 2 "	23' ${ }^{\prime \prime}$	20'3"
		24	25' 6"	20' 3"	$17^{\prime \prime} 8^{\prime \prime}$
	362S200-97	12	$35^{\prime \prime}$ "	28' $\mathbf{3 \prime}^{\prime \prime}$	24' " $^{\prime \prime}$
		16	32' 3"	25' 8 "	22' ${ }^{\prime \prime}$
		24	$28^{\prime \prime}{ }^{\prime \prime}$	22' 5"	19'7"
	362S250-43	12	29' 6"	23' 5"	20' ${ }^{\prime \prime}$
		16	26'10"	$21^{\prime \prime} 3^{\prime \prime}$	18' 7 "
		24	23' 5"	$18^{\prime \prime} 7$	$16^{\prime \prime}{ }^{\prime \prime}$
	362S250-54	12	31' 7 "	25' 1"	21' 11"
		16	28' 8"	22' 9"	19' 11"
		24	$25^{\prime \prime} 1$	19'11"	17' 4"
	362S250-68	12	$33^{\prime} 11{ }^{\prime \prime}$	26' 11"	23' ${ }^{\prime \prime}$
		16	30' 10"	24'6"	21'5"
		24	26' 11"	21' 5"	$18^{\prime \prime} 8^{\prime \prime}$
	362S250-97	12	37' 7 "	29' 10"	26'1"
		16	$34^{\prime} 2$ "	27' 1"	$23^{\prime \prime} 8^{\prime \prime}$
		24	$29^{\prime} 10$ "	23' 8"	20' $8^{\prime \prime}$

Notes:

1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
2 A $1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $\mathrm{h} / \mathrm{t}>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A 1-1/2" by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.
11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

INTERIOR WALL HEIGHTS
With structural framing

	Member	Spacing (in) o.c.	5psf		
			L/120	L/240	L/360
	400S137-33	12	$25^{\prime \prime} 1$	19'11"	$17^{\prime \prime} 5^{\prime \prime}$
		16	22'7"	18' 1"	15' 10"
		24	18'6"	15' 10"	13' 10 "
	400S137-43	12	$27^{\prime \prime}{ }^{\prime \prime}$	21'8"	18' 11"
		16	24'10"	19' 8"	17' $2^{\prime \prime}$
		24	21'8"	$17{ }^{17}$	$15^{\prime} 0{ }^{\prime \prime}$
	400S137-54	12	29'3"	23' 2 "	20'3"
		16	$26^{\prime \prime} 7$	21'1"	18'5"
		24	23' 2 "	18' 5 "	16' 1"
	400S137-68	12	$31^{\prime \prime}{ }^{\prime \prime}$	$24^{\prime} 10{ }^{\prime \prime}$	21' ${ }^{\prime \prime}$
		16	$28^{\prime \prime}{ }^{\prime \prime}$	22'7"	$19^{\prime \prime} 8^{\prime \prime}$
		24	24' 10"	19' ${ }^{\prime \prime}$	17' $2^{\prime \prime}$
	400S137-97	12	$34^{\prime \prime} 5$	$27^{\prime \prime} \mathbf{4}^{\prime \prime}$	23'11"
		16	$31^{\prime \prime \prime}$	24' 10"	21'8"
		24	$27^{\prime \prime} \mathbf{4}^{\prime \prime}$	21' 8 "	18' 11"
	400S162-33	12	26'3"	20'10"	$18^{\prime \prime}{ }^{\prime \prime}$
		16	23' 11"	18'11"	16' 7"
		24	19'10"	16'7"	$14{ }^{\prime} 6{ }^{\prime \prime}$
	400S162-43	12	$28^{\prime 7}$	22' ${ }^{\prime \prime}$	19'10"
		16	$26^{\prime \prime} 0$	20'7"	$18^{\prime \prime} 0$
		24	22' 8"	$18^{\prime \prime} 0$	15'9"
	400S162-54	12	$30^{\prime \prime} 8$	24' 4 "	21'3"
		16	$27^{\prime \prime} 10$	22'1"	$19^{\prime \prime} 4^{\prime \prime}$
		24	$24^{\prime \prime} \mathbf{4}^{\prime \prime}$	19'4"	$16^{\prime} 10{ }^{\prime \prime}$
	400S162-68	12	32' 10"	26'0"	22'9"
		16	29'10"	$23^{\prime \prime} 8$	20' $8^{\prime \prime}$
		24	$26^{\prime \prime} 0$	20' 8"	$18^{\prime \prime} 1$
	400S162-97	12	$36^{\prime \prime}{ }^{\prime \prime}$	$28{ }^{\prime \prime}$	25'1"
		16	32'11"	$26^{\prime \prime} 1$	22' 10"
		24	28' 9 "	22' 10"	19' 11"

	Member	Spacing (in) o.c.	5psf		
			L/120	L/240	L/360
	400S200-33	12	27' 8"	21' 11"	19' 2 "
		16	25' 1"	19'11"	17' 5"
		24	20'10"	$17^{\prime \prime} 5$	15' ${ }^{\prime \prime}$
	400S200-43	12	30' 2 "	23'11"	20' 11"
		16	27' 5"	21'9"	19' 0 "
		24	23'11"	19'0"	16' 7 "
	400S200-54	12	32' 4"	25' 8"	22' 5"
		16	29'5"	$23^{\prime \prime}{ }^{\prime \prime}$	$20^{\prime \prime} 5^{\prime \prime}$
		24	25' 8"	20'5"	17' 10"
	400S200-68	12	$34^{\prime \prime} 8{ }^{\prime \prime}$	$27^{\prime \prime} 6^{\prime \prime}$	$24^{\prime \prime} 0$
		16	$31{ }^{\prime \prime}$	$25^{\prime \prime} 0$	21' 10"
		24	$27^{\prime \prime} 6^{\prime \prime}$	21'10"	19'1"
	400S200-97	12	$38^{\prime \prime} 5$	30' 6"	26' 7 "
		16	$34{ }^{\prime} 10{ }^{\prime \prime}$	$27^{\prime \prime} 8$	24' ${ }^{\prime \prime}$
		24	$30^{\prime \prime}$ "'	24' 2 "	21'1"
	400S250-43	12	31' 9"	25'3"	$22^{\prime \prime} 0$
		16	28'10"	22'11"	20' 0 "
		24	$25^{\prime \prime}{ }^{\prime \prime}$	20'0"	$17{ }^{\prime \prime}{ }^{\prime \prime}$
	400S250-54	12	$34^{\prime \prime} 0$	27'0"	23' 7 "
		16	30'10"	24' 6"	21' 5"
		24	27' 0 "	$21^{\prime \prime}$	$18^{\prime \prime} 8$
	400S250-68	12	36'7"	29'0"	25' 4"
		16	$33^{\prime \prime}{ }^{\prime \prime}$	$26^{\prime \prime}{ }^{\prime \prime}$	$23^{\prime \prime} 0$
		24	29'0"	$23^{\prime \prime} 0$	20'1"
	400S250-97	12	40'7"	32' 2 "	28'1"
		16	36' 10"	29'3"	25' 7 "
		24	32' 2 "	$25^{\prime \prime}$	22'4"

Notes:
1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10 away from the end bearing.
2 A $1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately
6 Web crippling check based on 1 -inch end bearing. Where limiting heights are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an ' have $\mathrm{h} / \mathrm{t}>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A $1-1 / 2^{\prime \prime}$ by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $F y=50$ ksi for 54 mil, 68 mil and 97 mil Studs.
11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

	Member	Spacing (in) o.c.	5 psf		
			L/120	L/240	L/360
	550S137-33	12	31' 7 "	25' 7 "	22' 5"
		16	$27{ }^{\prime \prime}$	23' 3"	20'4"
		24	22'4"	$20^{\prime \prime} 4^{\prime \prime}$	$17^{\prime \prime}{ }^{\prime \prime}$
		12	35' 2 "	27'11"	24'4"
	550S137-43	16	31' 11"	25'4"	22' ${ }^{\prime \prime}$
		24	26'9"	22' 2 "	19'4"
		12	$37{ }^{\prime \prime} 8$	29'11"	26'1"
	550S137-54	16	34' ${ }^{\prime \prime}$	27' ${ }^{\prime \prime}$	23'9"
		24	$29^{\prime \prime} 11{ }^{\prime \prime}$	23' 9 "	20'9"
		12	40'4"	$32^{\prime \prime} 0$	$28^{\prime \prime} 0$
	550S137-68	16	$36^{\prime \prime} 8$	29'1"	25'5"
		24	$32^{\prime \prime} 0$	25' 5"	22' ${ }^{\prime \prime}$
		12	$44^{\prime} 7$ "	35' 5"	30'11"
	550S137-97	16	40' 6"	32' 2 "	28'1"
		24	$35^{\prime \prime} 5^{\prime \prime}$	$28^{\prime \prime} 1{ }^{\prime \prime}$	$24^{\prime} 6$ "
		12	33' 8"	26' 9"	23'4"
	550S162-33	16	29'5"	24'4"	21'3"
		24	$24^{\prime \prime} 0$	21'3"	18'6"
		12	$36{ }^{\prime \prime}$	29'1"	25' 5"
	550S162-43	16	$33^{\prime \prime}$ " $^{\prime}$	26'5"	23'1"
		24	29'1"	23'1"	20' ${ }^{\prime \prime}$
		12	39'4"	$31^{\prime \prime}{ }^{\prime \prime}$	27'3"
	550S162-54	16	35' 9"	28'5"	24'9"
		24	31'3"	24'9"	21'8"
		12	42' 2 "	33' ${ }^{\prime \prime}$	29'3"
	550S162-68	16	38'4"	30' 5'	26'7"
		24	33' 6 "	$26^{\prime \prime} 7$	23' ${ }^{\prime \prime}$
		12	46' 9"	37'1"	32' 5"
	550S162-97	16	42'5"	33' 8"	29'5"
		24	37' 1"	$29^{\prime \prime}{ }^{\prime \prime}$	25' 8"

	Member	Spacing (in) o.c.	5psf		
			L/120	L/240	L/360
5-1/2" Structural Framing	550S200-33	12	$35{ }^{\prime \prime}$	28'0"	24' 6"
		16	$31{ }^{\prime \prime}$	25' 5"	22'3"
		24	25' 7 "	22'3"	$19^{\prime \prime} 5^{\prime \prime}$
	550S200-43	12	38'7"	30'7"	26' 9 "
		16	35' 1"	27' 10"	$24^{\prime \prime} 4^{\prime \prime}$
		24	30' $6^{\prime \prime}$	$24^{\prime \prime}{ }^{\prime \prime}$	21'3"
	550S200-54	12	41' 5"	32'10"	28' 8"
		16	37' 7 "	29'10"	$26^{\prime \prime} 1$
		24	32' 10"	26'1"	22'9"
	550S200-68	12	44'5"	35' 3"	30' 10"
		16	40' ${ }^{\prime \prime}$	32 0"	28' 0 "
		24	$35^{\prime \prime} 3^{\prime \prime}$	$28^{\prime \prime} 0$	$24^{\prime \prime}{ }^{\prime \prime}$
	550S200-97	12	$49^{\prime \prime} 3^{\prime \prime}$	39'1"	34' ${ }^{\prime \prime}$
		16	$44{ }^{\prime \prime}{ }^{\prime \prime}$	35^{\prime} 6"	31' 1"
		24	$39^{\prime \prime} 1{ }^{\prime \prime}$	$31^{\prime \prime} 1$	$27^{\prime \prime} 1$
	550S250-43	12	40' 5"	$32^{\prime \prime} 1$	28'1"
		16	36' 9"	29' 2 "	25' 6"
		24	$31{ }^{\prime \prime}$	25'6"	$22^{\prime \prime} 3^{\prime \prime}$
	550S250-54	12	$43^{\prime \prime}{ }^{\prime \prime}$	$34^{\prime \prime} 4^{\prime \prime}$	$30^{\prime \prime} 0$
		16	39' 3 "	31' ${ }^{\prime \prime}$	$27^{\prime \prime}{ }^{\prime \prime}$
		24	$34^{\prime \prime} 4^{\prime \prime}$	27'3"	$23^{\prime} 10$ "
	550S250-68	12	46' 7 "	37' 0"	32' 4"
		16	42' 4 "	33' 7 "	29'4"
		24	$37{ }^{\prime \prime}$	29'4"	$25^{\prime \prime} 8^{\prime \prime}$
	550S250-97	12	51' 10"	41' ${ }^{\prime \prime}$	35' 11"
		16	47'1"	$37^{\prime} 4^{\prime \prime}$	32' 8"
		24	41' 2 "	32 8"	$28^{\prime \prime} 6^{\prime \prime}$

Notes:

1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
$2 \mathrm{~A} 1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights Web crippling check based on 1 -inch end bearin
are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $\mathrm{h} / \mathrm{t}>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A 1-1/2" by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.

11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

Notes:
1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
$2 \mathrm{~A} 1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $h / t>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A 1-1/2" by 4 " knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. ($3 / 4^{\prime \prime}$ for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.

11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

				5psf	
	Member	Spacing (in) o.c.	L/120	L/240	L/360
	800S137-33 ${ }^{1}$	12	37' 10"	$34^{\prime \prime} 0$	29' 8"
		16	32'9"	30'11"	$27{ }^{\prime \prime}$
		24	26'9"	26'9"	$23^{\prime \prime} 7$
	800S137-43	12	45' 11"	37' 5"	32 8"
		16	39' 9"	$34{ }^{\prime \prime}$	29' 9"
		24	32' 5"	29'9"	$25^{\prime \prime} 11{ }^{\prime \prime}$
	800S137-54	12	50' 9"	40'3"	35' ${ }^{\prime \prime}$
		16	46' 1"	36' 7 "	31' 11"
		24	40'3"	31' 11"	$27^{\prime \prime 11}$
	800S137-68	12	$54{ }^{\prime} 10$	$43^{\prime} 6{ }^{\prime \prime}$	$38^{\prime \prime} 0$
		16	$49^{\prime} 10$ "	$39^{\prime \prime}$ "	$34^{\prime \prime} 6^{\prime \prime}$
		24	43' 6"	$34^{\prime \prime} 6^{\prime \prime}$	30' 2 "
	800S137-97	12	60' 10"	48' 4 "	42' 2 "
		16	55' 4 "	43'11"	38' ' $^{\prime \prime}$
		24	48'4"	$38^{\prime \prime} 4^{\prime \prime}$	$33^{\prime \prime} 6^{\prime \prime}$
	800S162-33 ${ }^{1}$	12	$41^{\prime} 0$ "	35' $5^{\prime \prime}$	30'11"
		16	35' 6"	32' 2 "	28'1"
		24	29'0" e	28'1"	24'7"
	800S162-43	12	49'1"	38'11"	$34^{\prime} 0$ "
		16	42' 10"	$35{ }^{\prime \prime}$	30' 11"
		24	35' 0 "	30'11"	27' 0 "
	800S162-54	12	52' 9"	41'10"	36' 7 "
		16	47' 11"	38'1"	$33^{\prime} 3^{\prime \prime}$
		24	41' 10"	$33^{\prime} 3$ "	29'0"
	800S162-68	12	$57{ }^{\prime \prime} 0$	45' ${ }^{\prime \prime}$	$39^{\prime \prime}$ "
		16	51' 10"	41' 1"	35' 11"
		24	45' ${ }^{\prime \prime}$	35' 11"	31'5"
	800S162-97	12	63' 5"	50' 4"	$43^{\prime} 11{ }^{\prime \prime}$
		16	57' 7"	45' 9"	39' 11"
		24	50' $\mathbf{4}^{\prime \prime}$	39'11"	$34^{\prime \prime} 11{ }^{\prime \prime}$

	Member	Spacing (in) o.c.	5 psf		
			L/120	L/240	L/360
皆	800S200-33 ${ }^{1}$	12	$44^{\prime \prime} 0$	37' 9'	$33^{\prime \prime} 0$
		16	38'1"	$34^{\prime \prime}{ }^{\prime \prime}$	29' 11"
		24	31'1" e	29'11" e	$26^{\prime \prime} 2^{\prime \prime}$
	800S200-43	12	51' 10"	41'1"	35' 11"
		16	45' 10"	$37^{\prime \prime}{ }^{\prime \prime}$	$32{ }^{\prime \prime}$
		24	37' 5"	32 8"	28' 6 "
	800S200-54	12	$55{ }^{\prime \prime}$	$44^{\prime \prime} 2^{\prime \prime}$	38' 7 "
		16	$50^{\prime} 7$ "	$40^{\prime \prime} 2^{\prime \prime}$	$35^{\prime \prime} 1{ }^{\prime \prime}$
		24	44' 2 "	35'1"	30' 8"
	800S200-68	12	59' 9"	47' 5"	41' 5"
		16	$54^{\prime \prime} \mathbf{4 "}^{\prime \prime}$	$43^{\prime \prime} 1{ }^{\prime \prime}$	37' 8"
		24	47' 5"	371 8"	32' 11"
	800S200-97	12	$66^{\prime \prime} 6^{\prime \prime}$	52 9"	$46^{\prime \prime} 1{ }^{\prime \prime}$
		16	$60^{\prime \prime} 5^{\prime \prime}$	47' 11"	41' 11"
		24	$52^{\prime \prime} 9$	41' 11"	36' 7 "
	800S250-43	12	$54^{\prime \prime} 0$	42' 11"	$37{ }^{\prime \prime} 6^{\prime \prime}$
		16	$47^{\prime \prime} 0$	$39^{\prime \prime} 0^{\prime \prime}$	$34^{\prime \prime} 0$
		24	38' 4 "	$34^{\prime \prime} 0^{\prime \prime}$	29' 9"
	800S250-54	12	$57{ }^{\prime} 10$	45' 11"	$40^{\prime \prime} 1{ }^{\prime \prime}$
		16	$52^{\prime \prime} 7$	$41^{\prime \prime} 8$	$36^{\prime \prime} 5^{\prime \prime}$
		24	45' 11"	$36^{\prime \prime} 5^{\prime \prime}$	31' 10"
	800S250-68	12	$62^{\prime \prime}$	$49^{\prime} 6$ "	43' ${ }^{\prime \prime}$
		16	$56{ }^{\prime \prime}$	44' 11"	39' ${ }^{\prime \prime}$
		24	$49^{\prime \prime} \mathbf{6}^{\prime \prime}$	39' 3"	$34^{\prime \prime} 4^{\prime \prime}$
	800S250-97	12	69 ' 6"	$55^{\prime \prime} 2^{\prime \prime}$	48' 2 "
		16	$63^{\prime \prime} 2$	$50^{\prime \prime} 1{ }^{\prime \prime}$	$43^{\prime \prime} 9$
		24	$55 ' 2$	$43^{\prime \prime} 9$	$38{ }^{\prime \prime}$

Notes:

1 Studs are checked for simple-span deflection and stress. Stress calculations are made for mid-span fully braced moment, end shear through the unperforated section and shear moment interaction through the perforated section 10" away from the end bearing.
$2 \mathrm{~A} 1 / 3$ stress increase is not used.
3 Limiting heights are based on continuous lateral support of each flange over the full height of the stud.

4 Listed limiting heights are based on steel properties only.
5 End reactions must be checked for web crippling separately.
6 Web crippling check based on 1 -inch end bearing. Where limiting heights are followed by "e", web stiffeners are required.
7 Allowable moment is the lesser of local and distortional buckling. Stud distortional buckling based on an assumed $K \phi=0$.

8 Members marked with an 'have $\mathrm{h} / \mathrm{t}>200$, and thus require end stiffeners.
9 Capacities are calculated according to the AISI S100-16 (2020) w/S2-20. A 1-1/2" by $4^{\prime \prime}$ knockout spaced no closer than $24^{\prime \prime}$ o.c. is assumed. (3/4" for 2-1/2" studs).
10 All values are based on Fy=33ksi for 33 mil and 43 mil Studs, and $\mathrm{Fy}=50 \mathrm{ksi}$ for 54 mil, 68 mil and 97 mil Studs.
11 For deflection calculations, interior wall loads have been multiplied by 1.0 per AISI S240.

